integral Konu Anlatımı Yazılı

integral Konu Anlatımı Yazılı
1 Yıldız2 Yıldız3 Yıldız4 Yıldız5 Yıldız (1 Oy Verildi) 5 üzerinden ortalama 5,00 puan
Loading...

Öncelikle Bu derse nasıl çalışmanız gerektiği ile ilgili bir kaç küçük öneride bulunursak;

İlk olarak Türev konusunu öğrenmeden, integral konusunu çalışmaya başlamamalısınız.İntegral konusuda diğer LYS matematik konuları gibi öğrencilerin gözünde korkulan bir konudur ama düzenli çalışma tekrar ve pratik yollar ile konu hem rahat bir şekilde öğrenilebilir hemde öğrenme aşaması zevkli bir hal alarak sıkıcılıktan kendimizi kurtarabiliriz. integral Konu Anlatımı çalışmaya başlamadan önce ilk olarak bu konuyla alakalı kafamızda oluşturduğumuz ön yargıları kaldırıp bu derse olumlu bir şekilde bakarak “Ben bu dersi rahatlıkla öğrenebilirim ve yapabilirim” diyerek başlayın.

integral konu anlatımı olarak bakıldığında diğer kısa anlatımı olan matematik konuları içinde yer almıyor ama birçok konu da yer alan kafa çeldirici soruların bu konu içinde çok fazla bulunmaması ise sizin avantajınız haline gelebilir. Çünkü düz mantık  formülü yerine koy çözümü al sistemi bu konu içinde daha etkidir. Eğitim-Dünyası olarak bu konuyu biraz uzun olması hasebiyle 3 e bölmüş bulunmaktayız. ilk olarak burada yazımızın devamında yer alan yazılı konu anlatımı bulunuyor 2. olarak ise  Türkiye’nin internette en çok tercih edildiğini düşündüğümüz 8 tane farklı hocasının videolu  konu anlatımlarının bulunduğu konumuz (integral Konu Anlatımı Video) yer almaktadır, ardından ve 3. olarak ise konu dersini tamamen çalıştıktan sonra konuyu iyice pekiştirmenizi sağlayacak olan yine farklı hocaların anlatımıyla çözümlü sorular yer almaktadır  ve bu çözümlü soruların içinde LYS de çıkmış sorularda çözümleriyle birlikte video olarak bulunmaktadır. Tabi buraya bir de integral formüllerini eklemiş bulunmaktayız .(integral Çözümlü Sorular ve Formüller)

Şimdi bu kadar anlatımın ve çözümlü sorunun yer aldığı dökümanları sağladıktan sonra basit bir şekilde nasıl etkili kullanabileceğiniz ile alakalı kendi yöntemimizi de aktaralım öncelikle yazılı anlatımda verdiğimiz konuyu şöyle bir göz ucuyla okuyun ardından video konu anlatımları sayfamıza geçerek istediğiniz hocadan (Burada bir hoca tavsiye etmiyoruz çünkü herkesin sevdiği tarz faklıdır, zaten sitemizden diğer derslere çalıştıysanız sabit takip etmek istediğiniz bir hoca mutlaka olacaktır) konu anlatımını biraz aralar vererek ve notlar alarak dinleyin verdiğiniz aralarda derse devam etmeden önce aldığınız notları bir kere okuyun ondan sonra derse devam edin, eğer dinlediğiniz hocadan çok bir şey anlamadığınızı düşünüyorsanız diğer hocaların anlatımlarını dinleyerek, hem bir nevi tekrar hemde farklı bir bakış açısı kazanarak konuyu daha iyi özümseyebilirsiniz ve konu anlatımını bitirdikten sonra varsa elinizdeki test kitaplarından bir test çözmeye çalışın, buradaki amaç bir nevi ilk başta kendinizi denemek, kesinlikle çok çözemediğiniz soru olursa kendinizi kötü hissetmeyin söylediğim gibi daha dersi bitirmedik sadece kendimizi denedik burada iyi kötü kendimiz ve takıldığımız noktaları görmüş olduk ve sırada  3. olarak bahsettiğimiz çıkmış ve normal soruların çözümleriyle beraber yer aldığı sayfamıza giderek buradaki hocalarımızın soru çözümlerini izleyiniz. Böylelikle hem çözdüğünüz testteki eksikliklerinizi giderebilirsiniz hemde çeşitli hocaların farklı sorulardaki çözümlerini izlediğiniz için sorular hakkında daha detaylı bakış açıları kazanarak konuyu çok iyi kavramış olursunuz. Burada aşağıya da ekleyeceğimiz bazı pratik yöntemlere de bakarak ve daha çok test çözerek hem konuyu hemde  formülleri çok çaba sarf etmeden mantığıyla birlikte öğrenmiş olacaksınız. Dilimiz sürçtüyse affola, egitim-dunyasi.net olarak başarılar dileriz

integral Konu Anlatımı

Tanım: Türev kavramının bir eğriye üzerindeki bir noktadan çizilen teğetin eğiminin bulunması probleminden ortaya çıktığını, türev bir değiflim oranı olduğundan hareket eden cisimlerin hız ve ivmeleri ya da buna benzer problemlerin çözümünde kullanılır. İntegral kavramına geometrik bir anlam vermek gerekirse bazı düzgün olmayan bölgeler alanlarının bulunması probleminden ortaya çıktığını söyleyebiliriz. İntegral, hareket problemleri, dönel cisimlerin hacimleri, iş, kütle, kütle merkezi ve eylemsizlik momenti bulunması; diğer bilim dalları ile ilgili pek çok problemlerin çözümünde kullanılır.
Türevi f(x) olan bir F(x) fonksiyonuna f(x) in bir ilkel fonksiyonu veya integral denir.

A. DİFERANSİYEL KAVRAMI

x in sonsuz küçük değişimi dx şeklinde gösterilir. Buna x değişkeninin diferansiyeli denir.

Fonksiyondaki değişim dy ile gösterilir.

integral Konu Anlatımı www.egitim-dunyasi.net

dy = f ‘(x)dx ifadesine y = f(x) fonksiyonunun diferansiyeli denir.

B. BELİRSİZ İNTEGRAL

Türevi f fonksiyonu olan bir F fonksiyonu verilsin. Bu durumda F fonksiyonuna f fonksiyonununbelirsiz integrali, ters türevi, ters diferansiyeli veya ilkeli adı verilir. Belirsiz integral aşağıdaki gibi ifade edilir:

integral Konu Anlatımı www.egitim-dunyasi.netBurada c reel sayısına integral sabiti veya integrasyon sabiti adı verilir. F fonksiyonunun türevi f fonksiyonu olduğundan F fonksiyonuna herhangi bir sabit eklenerek oluşturulan her fonksiyonun türevi de f’dir. Dolayısıyla F’yi tam olarak tespit etmek mümkün değildir. İntegral sabitinin belirsiz integral alındıktan sonra eklenmesinin sebebi budur. Yukarıdaki işlemde dx ifadesine ise integral değişkeni denir. İntegral değişkeni hangi değişkene göre integral alınacağını belirtir.

integral Konu Anlatımı www.egitim-dunyasi.netsembolüne integral işareti, f(x) fonksiyonundan F(x) + c fonksiyonunun bulunmasını sağlayan işleme integral alma işlemi,

F(x) + c fonksiyonuna da f(x) in ilkel fonksiyonu denir.

Örnek:

 2x dx integralini hesaplayınız.

Çözüm: Bu integrali hesaplamak için türevi 2x olan ifadeyi bulmak gerekir. Bu ifadenin x2 olduğunu türev kavramından dolayı söyleyebiliriz. Şu halde

2xdx = ( x/ 2) +c  olur.

BELİRSİZ İNTEGRALİN ÖZELLİKLERİ

-) Lineerlik özellikleri:

f ve g integrallenebilen iki fonksiyon, c sabit bir reel sayı olmak üzere,

2

3

eşitlikleri geçerlidir.

-) İntegral türevin tersidir. f integrallenebilir bir fonksiyon olmak üzere,

4  eşitliği geçerlidir.

Uyarı

f(x) in integralini bulmak, türevi f(x) e eşit olan fonksiyonu bulmaktır.

C. İNTEGRAL ALMA KURALLARI

Kural

n ¹ 0 olmak üzere,integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Örnek:

(9x2 + 6x – 3)dx integralini hesaplayınız.

Çözüm:

(9x2 + 6x – 3)dx=9.x2 dx+ 6 .x dx – 3.dx

=9.(x3 / 3)+6.(x2 / 2) – 3x + c

=3x3 + 3x2  – 3x + c olur

 

D. İNTEGRAL ALMA YÖNTEMLERİ

Bazen integrali alınacak ifadenin (integrandın) hangi ifadenin türevi olduğunu görmek çok zordur. Bunun için bazı integrasyon metotları geliştirilmiştir. Şimdi bu metotlardan en kullanılışlı olanları verelim.

1. Değişken Değiştirme Yöntemi

İntegrali alınan fonksiyon f(u)du gibi daha basit bir ifadeye dönüştürülerek integral alınır.

Kural

n ¹ –1 olmak üzere, integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.netden başka köklü ifade içermeyen fonksiyonların integralini hesaplamak için, x = a × sint değişken değiştirmesi yapılır.

Kural

integral Konu Anlatımı www.egitim-dunyasi.netden başka köklü ifade içermeyen fonksiyonların integralini hesaplamak için, integral Konu Anlatımı www.egitim-dunyasi.net değişken değiştirmesi yapılır.

Kural

integral Konu Anlatımı www.egitim-dunyasi.netden başka köklü ifade içermeyen fonksiyonların integralini hesaplamak için, x = a × tantdeğişken değiştirmesi yapılır.

Kural

 integral Konu Anlatımı www.egitim-dunyasi.netköklü ifadelerini içeren fonksiyonların integrallerini hesaplamak için E.k.o.k.(m, n) = polmak üzere,ax + b = tpdeğişken değiştirmesi yapılır.

Örnek:  (x3 – 2x)5 .(3x2 – 2)dx integralini hesaplayınız.

Çözüm: x3 + 2x =t   ⇒   (3x2 – 2)dx = dt olup değerler yerine yazılırsa,

(x3 – 2x)5 .(3x2 – 2)dx = t5dt = t6/6 + c = [(x3 – 2x)6 / 6] + c

Örnek: esin x .cos x dx integralini hesaplayınız.

Çözüm: sin x = u   ⇒  cos x dx = du

esin x .cos x dx = eu .du =eu + c =esin x + c

2. Kısmî İntegrasyon Yöntemi

u = f(x)

v = g(x)

olsun. u × v nin diferansiyeli,

d(u × v) = du × v + dv × u

olur. Buradan,

u × dv = d(u × v) – v × du

olur. Her iki tarafın integrali alınırsa,
integral Konu Anlatımı www.egitim-dunyasi.net

Uyarı

Kısmî integralde u nun ve dv nin doğru seçilmesi çok önemlidir. Seçim doğru yapılmazsa, çözüme yaklaşmak yerine, çözümden uzaklaşılır. Türev ve integral alma bilgileri ışığında, seçim sezgisel olarak yapılabilir. Ancak, kolaylık sağlayacağı için aşağıdaki kuralı göz önüne alabilirsiniz.

Kural

 integral Konu Anlatımı www.egitim-dunyasi.net integrallerinde;

integral Konu Anlatımı www.egitim-dunyasi.net

Sonuç

n bir doğal sayı olmak üzere, integral Konu Anlatımı www.egitim-dunyasi.netf(x) bir polinom fonksiyon olmak üzere,integral Konu Anlatımı www.egitim-dunyasi.net

3. Basit Kesirlere Ayırma Yöntemi

P(x) ve Q(x) ortak çarpanı olmayan iki polinom olsun.

integral Konu Anlatımı www.egitim-dunyasi.netintegrali, vereceğimiz iki yöntemden biriyle sonuçlandırılır.

a. P(x) in derecesi Q(x) in derecesinden büyük ya da eşit ise;

P(x) in derecesi Q(x) in derecesinden büyük ya da eşit ise P(x), Q(x) e bölünür.

b. P(x) in derecesi Q(x) in derecesinden küçük ise;

P(x) in derecesi Q(x) in derecesinden küçükse ifade basit kesirlere ayrılır.

4. Trigonometrik Özdeşliklerden Yararlanarak İntegral Alma Yöntemi

Kural

sin x ve cos x in çift kuvvetlerinin çarpımı biçimindeki integrallerde şu iki özdeşlik kullanılır:integral Konu Anlatımı www.egitim-dunyasi.netintegral Konu Anlatımı www.egitim-dunyasi.net

Kural

 integral Konu Anlatımı www.egitim-dunyasi.net biçimindeki integralleri aşağıdaki özdeşlikler yardımıyla sonuçlandırırız.integral Konu Anlatımı www.egitim-dunyasi.net

 

A. BELİRLİ İNTEGRAL

a ve b noktalarını içeren veya uç nokta kabul eden, türevi f fonksiyonu olan bir F fonksiyonu verilsin. Bu durumda belirli integral aşağıdaki gibi ifade edilir:

20

Belirli integrallerde sonuç belirli olduğundan integral sabiti kullanılmaz.

 

Belirli integralin eşiti integral Konu Anlatımı www.egitim-dunyasi.netgösterimlerinden biriyle yapılır.

integral Konu Anlatımı www.egitim-dunyasi.net

Uyarı

Daima sadeleşeceği için, integral sabiti olan c belirli integralde yazılmaz.

B. BELİRLİ İNTEGRALİN ÖZELLİKLERİ

Belirli integralde tıpkı belirsiz integralde olduğu gibi lineerlik özellikleri mevcuttur. Bunun dışında belirli integral aşağıdaki özelliklere sahiptir:

Özellik

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

Mutlak değer, işaret ve tam değer fonksiyonlarının integralleri, fonksiyonun işaret değiştirdiği noktalar göz önüne alınarak sonuçlandırılır.

Kural

İki ya da daha fazla fonksiyonun toplamının ya da farkının belirli integrali, bu fonksiyonların ayrı ayrı belirli integrallerinin toplamına ya da farkına eşittir.integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

 

Örnek:

2-1

şeklinde tanımlanan s :[0,3] => R fonksiyonunun [0,3] aralığındaki integralini bulunuz.,

Çözüm: 2-2

Örnek:

3

C. İNTEGRAL – TÜREV İLİŞKİSİ

Kural

 integral Konu Anlatımı www.egitim-dunyasi.net f(x) in integralinin türevi f(x) e eşittir.

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net

İNTEGRALİN UYGULAMALARI

Bu ders notumuzda bir  çok sınavda karşımıza çıkan ve çok önemli bir konu olan İntegral konusunun geniş konu anlatımını, konun önemli yerlerini bulabilirsiniz.

A. İNTEGRAL İLE ALAN ARASINDAKİ İLİŞKİ

Aşağıdaki şekilde y = f(x) eğrisi y = g(x) eğrisi x = a ve x = b doğrusu arasında kalan taralı bölge verilmiştir.

integral Konu Anlatımı www.egitim-dunyasi.net

Bölge (ya da eğriler) hangi konumda olursa olsun, yukarıdaki eğrinin denkleminden aşağıdaki eğrinin denkleminin çıkarılmasıyla oluşan belirli integral, bölgenin alanını ifade etmektedir.

integral Konu Anlatımı www.egitim-dunyasi.net

Bu sayfadan sonraki sayfada verilen şekilde x = f(y) eğrisi x = g(y) eğrisi y = a ve y = b doğrusu arasında kalan taralı bölge verilmiştir.

integral Konu Anlatımı www.egitim-dunyasi.net

Bölge (ya da eğriler) hangi konumda olursa olsun, sağdaki eğrinin denkleminden soldaki eğrinin denkleminin çıkarılmasıyla oluşan belirli integral, bölgenin alanını ifade etmektedir.

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

1. Hangi konumda olursa olsun, alan daima pozitif bir reel sayı ile ifade edilir. 2. Belirli integralin değeri bir reel sayıdır.3. İntegral ile alan ilişkilendirilirken,a. Alan x ekseninin üst kısmındaysa, alanı ifade eden sayı integrali de ifade eder.b. Alan x ekseninin alt kısmındaysa, alanı ifade eden sayının toplama işlemine göre tersi integrali ifade eder.

Kural

 integral Konu Anlatımı www.egitim-dunyasi.nety = f(x) parabolünün tepe noktasının apsisi r ordinatı k; x = f(y) parabolünün tepe noktasının apsisi n ordinatı m dir. integral Konu Anlatımı www.egitim-dunyasi.netYukarıda solda verilen parabolde taralı alan,
integral Konu Anlatımı www.egitim-dunyasi.net
integral Konu Anlatımı www.egitim-dunyasi.netYukarıda sağda verilen parabolde taralı alan,integral Konu Anlatımı www.egitim-dunyasi.net
 integral Konu Anlatımı www.egitim-dunyasi.netYandaki şekilde y = f(x) fonksiyonunun grafiği verilmiştir. Taralı alan, integral Konu Anlatımı www.egitim-dunyasi.net integral Konu Anlatımı www.egitim-dunyasi.net

Bu kurallar bütün paraboller için geçerlidir.

Kural

Şekilde y = f(x) fonksiyonunun grafiği verilmiştir.integral Konu Anlatımı www.egitim-dunyasi.net

B. İNTEGRAL İLE HACİM ARASINDAKİ İLİŞKİ

Kural

integral Konu Anlatımı www.egitim-dunyasi.net y = f(x) eğrisi, x = a, x = b doğruları ve x ekseni ile sınırlanan bölgenin (Taralı bölge) x ekseni etrafında 360° döndürülmesiyle oluşan dönel cismin hacmi:

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net x = g(y) eğrisi, y = c, y = d ve y ekseni tarafından sınırlanan bölgenin (Taralı bölge) y ekseni etrafında 360° döndürülmesiyle oluşan dönel cismin hacmi:

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net y = g(x) eğrisi, x = a, x = b ve y = f(x) tarafından sınırlanan bölgenin (Taralı bölge) x ekseni etrafında 360° döndürülmesiyle oluşan dönel cismin hacmi:

integral Konu Anlatımı www.egitim-dunyasi.net

Kural

integral Konu Anlatımı www.egitim-dunyasi.net x = f(y) eğrisi, y = c, y = d ve x = g(y) tarafından sınırlanan bölgenin (Taralı bölge) y ekseni etrafında 360° döndürülmesiyle oluşan dönel cismin hacmi:

integral Konu Anlatımı www.egitim-dunyasi.net

Burada bulunan Matematik integral konu anlatımı ile ilgili Eklenmesini istediğiniz alanlar var ise Lütfen yorum alanından bildiriniz. Ayrıca konu anlatımı hakkındaki soru, görüş ve önerilerinizi de yorum alanından bize iletebilirsiniz.
[egit1]
[egit2]
[egit3]

Yazar:
YORUMLAR & SORULAR-CEVAPLAR

Henüz yorum yapılmamış. Bu yazımız ile alakalı merak ettiklerinizi veya eklemek istediğiniz her türlü görüş ve öneriyi aşağıya yorum olarak yazabilirsiniz.

YORUMLAR & SORULAR-CEVAPLAR

(Yazımızla ilgili aklınızdaki soru ve düşünceleri yorum olarak aşağıya ekleyebilirsiniz.)